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This analysis is devoted to investigate analytical solutions of 
magnetohydrodynamics (MHD) generalized Burger’s fluid embedded with 
porous medium as a sum of Newtonian and non-Newtonian forms. The 
solutions are investigated for velocity field and shear stress and governing 
partial differential equations have been solved via the integral transforms. 
The solutions for velocity field and shear stress have been expressed into 
compact form i-e in terms of series form. The general solutions also satisfy 
initial and boundary condition and particularized for special cases along with 
sum of Newtonian and non-Newtonian forms. The impacts of permeability 
(porosity), magnetism and several rheological parameters have been 
analyzed for fluid flows by portraying graphical illustrations. The graphs are 
depicted via latest software namely Mathematica and Mathcad (16) 
packages. 
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1. Introduction 

*The linearized relationship between rate of 
strain and stress cannot be characterized by non-
Newtonian fluids because of the involvement of 
stress tensor and relaxation which convert 
viscoelastic fluids into highly complicated and 
nonlinear in contrast with Newtonian fluids. Non-
Newtonian fluids even have gotten considerable 
attention because of their useful applications in 
industries and engineering. For instance, emulsion, 
heavy oils, chyme, blood and polymer solutions etc. 
Such fluids are modeled by their proposed 
constitutive relationships with symmetries. The 
description of these fluids are modeled to 
characterize viscoelastic behavior of flows as 
Maxwell, Oldrord-B, Burger models characterize 
small relaxation phenomenon, retardation times, 
rheological properties respectively (Zhaosheng and 
Jianzhong, 1998; Rajagopal, 1982; Zhang et al., 2007; 
Tan and Masuoka 2007; Abro, 2016; Fetecau et al., 
2008; Abro and Shaikh, 2015). Furthermore, the 
main significance of Burger’s model is to describe 
the cheese in food products and asphalts in 
geomechanics. Also, the characteristics of motion of 
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the earths’ mantle, asphalt concrete, asphalt, Olivine 
rocks, geological structures and propagation of 
seismic waves in the interior of the earth can be 
described by this model (Murali Krishnan and 
Rajagopal, 2004). Due to diverse applications, 
Burgers model has received much attention. In 
continuation we present few references for the study 
of Burger model (Jamil, 2012; Tong, 2010; Jamil and 
Fetecau, 2010; Khan et al., 2006; Hayat et al., 2010). 
The analysis for electrical conducting fluid flows is 
termed as magnetohydrodynamics has diverted 
attentions of many scientists and researchers due to 
its vast application in science and engineering. In 
geophysics and astrophysics, 
magnetohydrodynamics is useful to study solar 
plasma, terrestrial cores, cosmical fluid dynamics, 
structure of rotating magnetic stars, and stellar 
structures. The significance of 
magnetohydrodynamics in science and engineering, 
particularly in industrial applications of 
magnetohydrodynamics lies in extraction of 
geothermal energy, crystal growth in the field of 
semiconductors, magnetohydrodynamics (MHD) 
pumps, metallurgical and material processes and 
nuclear reactors (Hsiao, 2011; Zheng et al., 2012; 
Ahmad and Nazar, 2010). Obtaining the analytical 
solutions in presence of porous medium and 
magnetohydrodynamics is not an easy task, that why 
solutions in literatures are very rare. Having these 
complexities several scholars are busy in order to 
contribute in this phenomenon (presence and 
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absence of porous medium and MHD). In our 
cognizance, some valuable contribution has been 
made by Khan et al. (2011) in which they studied 
magnetohydrodynamics flow of second grade fluid in 
porous medium for closed form solution. Hussain et 
al. (2010) has investigated second grade fluid in 
porous medium under oscillatory flows. Khan et al. 
(2012) has analyzed effects of thermal diffusion and 
ramped wall temperature for 
magnetohydrodynamics free convection flow in a 
porous medium. Furthermore few interested studies 
especially on MHD have been made by several 
researcher, we include here references in (Hayat et 
al., 2008a, 2008b; Abbasbandy et al., 2014; 
Freidoonimehr et al., 2015; Rashidi and Erfani, 2012; 
Rashidi et al., 2014). By the inspirations and 
motivations of above mentioned work, this analysis 
is devoted to investigate analytical solutions of MHD 
generalized Burger’s fluid embedded with porous 
medium as a sum of Newtonian and non-Newtonian 
forms. The solutions are investigated for velocity 
field and shear stress and governing partial 
differential equations have been solved via the 
integral transformational techniques. The solutions 
for velocity field and shear stress have been 
expressed into compact form i-e in terms of series 
form. The general solutions also satisfy initial and 
boundary condition and particularized for special 
cases along with sum of Newtonian and non-
Newtonian forms. The impacts of various rheological 
parameters have been analyzed for six models 
namely (i) Generalized Burger model, (ii) Burger 
model, (iii) Oldroyd-B model, (iv) Maxwell model, (v) 
Second Grade model and (vi) Newtonian model. 
These models are also discussed with and without 
porous medium and magnetohydrodynamics effects 
on fluid flow.  

2. Modeling of governing equations  

The constitutive equations for an incompressible 
generalized Burgers' fluid are (Jamil, 2012; Tong, 
2010; Jamil and Fetecau, 2010; Khan et al., 2006) 
(Eq. 1) 

 

𝑇 = −𝑝I + 𝑆,    𝜇 (𝐴1 + 𝜆4
𝛿2𝐴1

𝛿𝑡2
+𝜆3

𝛿𝐴1

𝛿𝑡
) = 𝑆 + 𝜆2

𝛿2𝑆

𝛿𝑡2
+

𝜆1
𝛿𝑆

𝛿𝑡
,                       (1) 

 

where, 𝑝 the pressure, I the identity tensor, S is the 
extra-stress tensor, μ the dynamic viscosity, 𝐴 =
 𝐿 + 𝐿𝑇 is the first Rivlin-Ericksen tensor, 𝐿 denotes 
velocity gradient¸𝜆1 and 𝜆3 (< 𝜆1) are relaxation and 
retardation time, 𝜆2 and ¸𝜆4 are new material 

parameters of the generalized Burgers' fluid and 
𝛿

𝛿𝑡
 

denotes the upper convected time derivative defined 
as (Eq. 2) 
 
𝛿2𝑆

𝛿𝑡2
=

𝛿

𝛿𝑡
(
𝛿𝑆

𝛿𝑡
),     

𝛿𝑆

𝛿𝑡
=

𝑑𝑆

𝑑𝑡
− 𝐿𝑆 − 𝑆𝐿𝑇 ,                    (2) 

 

𝑑

𝑑𝑡
 represents material time derivative. The unsteady 

flow of incompressible fluid is governed by (Eqs. 3 
and 4): 
 
div 𝑽 = 0,                      (3) 

𝜌
𝑑𝑉

𝑑𝑡
= div 𝑇 − 𝜎𝐵0

2𝑉 + 𝑅,                    (4) 
 

where, 𝜌 is the density of the fluid, 𝑉 is the velocity, 𝜎 
the electrical conductivity of the fluid, 𝐵0 the applied 
magnetic field’s magnitude and 𝑅 denotes the 
Darcy’s resistance. For the problem under 
consideration we assume a velocity field an extra-
stress tensor of the form (Eq. 5) 
 

𝑉 =  𝑉(𝑦, 𝑡) =  𝑤(𝑦, 𝑡)𝑖, 𝑆 =  𝑆(𝑦, 𝑡),                                 (5) 
 

where i is the unit vector along the x-co-ordinate 
direction. Introducing Eq. 5 in Eq. 1 and keeping 
initial conditions in mind (Eq. 6) 
 

𝑆(𝑦, 0) =
𝜕𝑆(𝑦,0)

𝜕𝑡
= 0,                    (6) 

 

yields 𝜏𝑧𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑦 = 𝜏𝑦𝑧 = 0, and (Eq. 7) 
 

𝜇 (𝜆4
𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+ 1)

𝜕𝑤

𝜕𝑦
= (𝜆2

𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+ 1)𝑆𝑥𝑦 ,            (7) 

 

in which tangential stress is 𝑆𝑥𝑦. With reference (Tan 

and Masuoka, 2007), the generalized Burger’s fluid 
has relation for 𝑅 is  
 

−
𝜇 ∅

𝑘
(𝜆4

𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+ 1)𝑽(𝑦, 𝑡) = 𝑹(𝜆2

𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+ 1),  (8) 

 

where, 𝑘 is the permeability of the porous medium 
and ∅ is the porosity. Assuming that there is no 
pressure gradient in the flow direction and 
introducing Eq. 5 into Eq. 4 keeping in mind Eqs. 7, 8, 
we obtain following governing equations as (Jamil, 
2012; Tong, 2010; Jamil and Fetecau, 2010; Khan et 
al., 2006; Hayat et al., 2010) (Eqs. 9 and 10) 
 
 

(𝜆2
𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+ 1)

𝜕𝑤(𝑦,𝑡)

𝜕𝑡
= 𝜈 (𝜆4

𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+ 1)

𝜕2𝑤(𝑦,𝑡)

𝜕𝑦2
−

𝐵 (𝜆2
𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+ 1)𝑤(𝑦, 𝑡) − Φ(𝜆4

𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+

1)𝑤(𝑦, 𝑡),                         (9) 

(𝜆2
𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+ 1) 𝜏(𝑦, 𝑡) = 𝜇 (𝜆4

𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+ 1)

𝜕𝑤(𝑦,𝑡)

𝜕𝑡
,    

                                             (10) 

 

where, =
𝜇

𝜌
, 𝐵 = 

𝜎𝐵0

𝜌
, Φ =

𝜇 ∅

𝑘
 are kinematic viscosity, 

applied magnetic field, porous medium of the fluid 
respectively. 

3. Statement of the problem 

We consider an incompressible and electrically 
conducting generalized Burgers fluid in porous 
medium occupying the space above a plate 
perpendicular to the y-axis. The plate is permeated 
under an influence of magnetic field 𝐵0 normal to the 
flow in porous medium. For 𝑡 = 0+ the plate begins 
to accelerate in its own plane with velocity 𝑤(0, 𝑡) =
𝑈𝐻(𝑡)𝑡𝑝. Due to the shear, the fluid above the plate 
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is gradually moved, while the governing equations 
are given by Eqs. 9 and 10 and corresponding initial, 
boundary and natural conditions are (Eqs. 11-13): 

 
𝜕2𝑤(𝑦,0)

𝜕𝑡2
=

𝜕𝑤(𝑦,0)

𝜕𝑡
= 𝑤(𝑦, 0) = 0,           𝑦 > 0,                     (11) 

𝑤(0, 𝑡) = 𝑈𝐻(𝑡)𝑡𝑝                                              𝑡 ≥ 0.            (12)  

𝑤(𝑦, 𝑡),
𝜕𝑤(𝑦,𝑡)

𝜕𝑡
→ 0     𝑎𝑠      𝑦 → ∞     𝑎𝑛𝑑     𝑡 > 0,          (13) 

4. Solution of the problem 

4.1. Calculation of velocity field 

In order to explore the exact solution, we shall 
apply the Fourier sine transform to Eq. 9, and having 
in account the imposed conditions (11) and (12), we 
find that(Eq. 14) 

 

(𝜆2
𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+ 1)

𝜕𝑤𝑠(𝜉,𝑡)

𝜕𝑡
− 𝜈 (𝜆4

𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+

1) {−𝜉2𝑤𝑠(𝜉, 𝑡) + √
2

𝜋
 𝑤(0, 𝑡)} + 𝐵 (𝜆2

𝜕2

𝜕𝑡2
+𝜆1

𝜕

𝜕𝑡
+

1)𝑤𝑠(𝜉, 𝑡) + Φ(𝜆4
𝜕2

𝜕𝑡2
+𝜆3

𝜕

𝜕𝑡
+ 1)𝑤𝑠(𝜉, 𝑡) = 0,               (14) 

 

where, 𝑤𝑠(𝜉, 𝑡) is the Fourier sine transform of 
𝑤(𝑦, 𝑡) defined in Eq. 14 (Eq. 15) 
 

𝑤𝑠(𝜉, 𝑡) = √
2

𝜋
∫ 𝑤(𝑦, 𝑡)𝑆𝑖𝑛(𝑦𝜉)𝑑𝑦 

∞

0
,                   (15) 

 

where the Fourier sine transform has to justify 
imposed conditions Eq. 11, (Eq. 16) 
 
𝜕2𝑤𝑠(𝜉,0)

𝜕𝑡2
=

𝜕𝑤𝑠(𝜉,0)

𝜕𝑡
= 𝑤𝑠(𝜉, 0) = 0,           𝜉 > 0,                  (16) 

 

applying Laplace transform to Eq. 15 and keeping 
imposed conditions Eqs. 11 and 12, we obtain 
 

�̅�𝑠(𝜉, 𝑠) =      

√
2

𝜋
  

𝑈 𝜈 𝜉 𝑝!

𝑠𝑝+1
                                                                                     (17) 

[
(𝜆4𝑠

2+𝜆3𝑠+1)

[𝜆2𝑠
3+{𝜆1+𝜆2𝐵+𝜆4(Φ+𝜈𝜉2)}𝑠2+{1+𝜆1𝐵+𝜆3(Φ+𝜈𝜉2)}𝑠+(Φ+𝐵+𝜈𝜉2)]

]  

 
in order to write the solutions as a sum of Newtonian 
and non-Newtonian Part 𝑤𝑁(𝑦, 𝑡) + 𝑤𝑁𝑜𝑛(𝑦, 𝑡), we 
make 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 0 in Eq. 17, we have 
expression for Newtonian part as (Eq. 18) 
 

�̅�𝑠(𝑁)(𝜉, 𝑠) = √
2

𝜋
 

𝑈 𝜈 𝜉 𝑝!

𝑠𝑝+1(s+Φ+𝐵+𝜈𝜉2)
 ,                                (18) 

 

substituting Eq. 18 into Eq. 17, we find balanced 
equation (Eq. 19) 
 

�̅�𝑠(𝜉, 𝑠) = 𝑈√
2

𝜋

𝜈 𝜉 𝑝!

(Φ+𝐵+𝜈𝜉2)
 {

1

𝑠𝑝+1
−

1

𝑠𝑝(s+Φ+𝐵+𝜈𝜉2)
} +

𝑈√
2

𝜋

𝜈 𝜉 𝑝!

𝜆2
 × [

(𝜆4−𝜆3)𝑠
2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠+(𝜆3𝐵−𝜆1)

𝑠𝑝(s+Φ+𝐵+𝜈𝜉2)(𝑠−𝑠1)(𝑠−𝑠2)(𝑠−𝑠3)
]          (19) 

 

where, (𝑠 − 𝑠1)(𝑠 − 𝑠2)(𝑠 − 𝑠3) are the roots of an 
algebraic equation 
 
 𝜆2𝑠

3 + {𝜆1 + 𝜆2𝐵 + 𝜆4(Φ + 𝜈𝜉2)}𝑠2 + {1 + 𝜆1𝐵 +
𝜆3(Φ + 𝜈𝜉2)}𝑠 + (Φ + 𝐵 + 𝜈𝜉2). 
 

Inverting Eq. 19 by means of Fourier sine 
transform, we get (Eq. 20) 

 

�̅�(𝑦, 𝑠) =
2 𝑈 𝜈 𝜉 𝑝!

𝜋
 ∫

𝑠𝑖𝑛(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

∞

0
{

1

𝑠𝑝+1
−

1

𝑠𝑝(s+Φ+𝐵+𝜈𝜉2)
} 𝑑𝜉 +

2 𝑈 𝜈 𝑝!

𝜋 𝜆2
 ∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉)

∞

0
 ×

[
(𝜆4−𝜆3)𝑠

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠+(𝜆3𝐵−𝜆1)

𝑠𝑝(s+Φ+𝐵+𝜈𝜉2)(𝑠−𝑠1)(𝑠−𝑠2)(𝑠−𝑠3)
] 𝑑𝜉,                           (20) 

 
employing the fact of integral Eq. 21 
 

∫
𝜉 𝑠𝑖𝑛(𝛾𝜉)

𝛼2+𝜉2

∞

0
𝑑𝜉 =

𝜋

2
𝑒−𝛼𝛾 ,                         𝛼 > 0,                    (21) 

 
and using inverse Laplace transform in Eq. 20, we 
obtain convolution product as (Eq. 22) 

 

𝑤(𝑦, 𝑡) = 𝑈𝐻(𝑡)𝑡𝑝 𝐸𝑥𝑝 (−𝑦√
Φ+𝐵

𝜈
) −

2𝑈𝐻(𝑡)𝜈𝑝

𝜋
∫

𝜉 𝑠𝑖𝑛(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

∞

0
𝑡𝑝−1  ∗ 𝐸𝑥𝑝(−Φ − 𝐵 − 𝜈𝜉2)𝑑𝜉 +

2 𝑈 𝐻(𝑡) 𝜈 𝑝

𝜋 𝜆2
 × ∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉)

∞

0
 𝑡𝑝−1 ∗

[
 
 
 
 
 
 
 
  

(𝜆4−𝜆3)𝑠1
2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠1+(𝜆3𝐵−𝜆1) 𝐸𝑥𝑝(𝑠1)𝑡

(𝑠1+Φ+𝐵+𝜈𝜉2) (𝑠1−𝑠2) (𝑠1−𝑠3)
                              

+
(𝜆4−𝜆3)𝑠2

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠2+(𝜆3𝐵−𝜆1) 𝐸𝑥𝑝(𝑠2)𝑡

(𝑠2+Φ+𝐵+𝜈𝜉2) (𝑠2−𝑠1) (𝑠2−𝑠3)
                                

+
(𝜆4−𝜆3)𝑠3

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠3+(𝜆3𝐵−𝜆1) 𝐸𝑥𝑝(𝑠3)𝑡

(𝑠3+Φ+𝐵+𝜈𝜉2) (𝑠3−𝑠1) (𝑠3−𝑠2)
                                

+
(𝜆4−𝜆3)(Φ+𝐵+𝜈𝜉2)2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}(Φ+𝐵+𝜈𝜉2)+(𝜆3𝐵−𝜆1)

(𝑠1+Φ+𝐵+𝜈𝜉2)(𝑠2+Φ+𝐵+𝜈𝜉2)(𝑠3+Φ+𝐵+𝜈𝜉2)

× 𝐸𝑥𝑝(−Φ − 𝐵 − 𝜈𝜉2)𝑡                                                                                                                   ]
 
 
 
 
 
 
 
 

𝑑𝜉,                     (22) 

 
finally velocity field is expressed in compact form in 
terms of series, (Eq. 23) 
 

𝑤(𝑦, 𝑡) = 𝑤𝑁(𝑦, 𝑡) +
2 𝑈 𝐻(𝑡) 𝜈 𝑝

𝜋 𝜆2
∫ ∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉)

𝑡

0

∞

0
 (𝑡 − 𝑧)𝑝−1  ×

[

(𝜆4−𝜆3)(Φ+𝐵+𝜈𝜉2)2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}(Φ+𝐵+𝜈𝜉2)+(𝜆3𝐵−𝜆1)

(𝑠1+Φ+𝐵+𝜈𝜉2)(𝑠2+Φ+𝐵+𝜈𝜉2)(𝑠3+Φ+𝐵+𝜈𝜉2)

× 𝑒(−Φ−𝐵−𝜈𝜉2)𝑧 + ∑
(𝜆4−𝜆3)𝑠𝑛

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠𝑛+(𝜆3𝐵−𝜆1)𝑒
𝑠𝑛𝑧 

(𝑠𝑛+Φ+𝐵+𝜈𝜉2) (𝑠𝑛−𝑠(3−𝑛)!) (𝑠𝑛−𝑠4−(𝑛−1)!)
3
𝑛=1

] 𝑑𝜉 𝑑𝑧.  

                           (23) 

where, 𝑤𝑁(𝑦, 𝑡) = 𝑈𝐻(𝑡)𝑡𝑝 𝐸𝑥𝑝 (−𝑦√
Φ+𝐵

𝜈
) −

2𝑈𝐻(𝑡)𝜈𝑝

𝜋
∫ ∫

𝜉 𝑠𝑖𝑛(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
(𝑡 − 𝑧)𝑝−1𝐸𝑥𝑝(−Φ − 𝐵 − 𝜈𝜉2) 𝑧 𝑑𝜉 𝑑𝑧  

is the Newtonian part velocity field.  
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4.2. Calculation of shear stress 

For finding shear stress, we apply Laplace 
transform to Eq. 10, we find that (Eq. 24) 

𝜏̅(𝑦, 𝑠) = 𝜇 (
λ4𝑞

2+λ3𝑞+1

λ2𝑞
2+λ1𝑞+1

)
𝜕�̅�(𝑦,𝑠)

𝜕𝑦
,                  (24) 

 

in order to write the solutions as a sum of Newtonian 
and non-Newtonian Part 𝜏𝑁(𝑦, 𝑡) + 𝜏𝑁𝑜𝑛(𝑦, 𝑡), we 
make 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 0 in Eq. 24, we have 
expression for Newtonian part as (Eq. 25) 
 

𝜏̅(𝑁)(𝑦, 𝑠) = 𝜇
𝜕�̅�(𝑦,𝑠)

𝜕𝑦
,                  (25) 

substituting the expression of Eqs. 18 and 25 into Eq. 
24, we find balanced equation (Eq. 26) 
 

𝜏̅(𝑦, 𝑠) = −
2 𝑈 𝜇 𝜈 𝑝!

𝜋
∫

 𝜉2𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

∞

0

1

𝑠𝑝(s+Φ+𝐵+𝜈𝜉2)
𝑑𝜉 +

2 𝑈 𝜇 𝜈 𝑝!

𝜋 λ2
∫

 𝜉2𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

∞

0
 

1

𝑠𝑝+1
 × [

1

(s+Φ+𝐵+𝜈𝜉2)
−

λ4𝑠
2+λ3𝑠+1

(𝑠−𝑠1)(𝑠−𝑠2)(𝑠−𝑠3)
] 𝑑𝜉,                                 (26) 

 

now, writing Eq. 26 for more suitable following 
equivalent form (Eq. 27) 
 

 

𝜏̅(𝑦, 𝑠) = −
2𝑈 𝜇 𝜈 𝑝!

𝜋
∫

 𝜉2𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

∞

0

1

𝑠𝑝(s+Φ+𝐵+𝜈𝜉2)
𝑑𝜉 −

2𝑈𝜇𝜈𝑝!

𝜋 λ2
∫

 𝜉2𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

∞

0

1

𝑠𝑝
 𝑑𝜉 ×

[
 
 
 
 
 
 
 

(𝜆4−𝜆2)𝑠1
2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠1+(𝜆3−𝜆1)𝐵  

(𝑠1+Φ+𝐵+𝜈𝜉2) (𝑠1−𝑠2) (𝑠1−𝑠3)(𝑠−𝑠1)
                                            

+
(𝜆4−𝜆2)𝑠1

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠1+(𝜆3−𝜆1)𝐵  

(𝑠2+Φ+𝐵+𝜈𝜉2) (𝑠2−𝑠1) (𝑠2−𝑠3)(𝑠−𝑠2)
                                                

+
(𝜆4−𝜆2)𝑠1

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠1+(𝜆3−𝜆1)𝐵  

(𝑠2+Φ+𝐵+𝜈𝜉2) (𝑠3−𝑠1) (𝑠3−𝑠2)(𝑠−𝑠3)
                                                

+
(𝜆4−𝜆2)(Φ+𝐵+𝜈𝜉2)2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}(Φ+𝐵+𝜈𝜉2)+(𝜆3−𝜆1)𝐵

(𝑠1+Φ+𝐵+𝜈𝜉2)(𝑠2+Φ+𝐵+𝜈𝜉2)(𝑠3+Φ+𝐵+𝜈𝜉2)(𝑠+Φ+𝐵+𝜈𝜉2)
, ]

 
 
 
 
 
 
 

                                (27) 

 
finally applying inverse Laplace transform to Eq. 27, 
we expressed shear stress in compact form in terms 
of series, 
 

𝜏(𝑦, 𝑡) = 𝜏𝑁(𝑦, 𝑡) −
2 𝑈 𝐻(𝑡) 𝜇 𝜈 𝑝

𝜋 𝜆2
∫ ∫

𝜉2 𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
 (𝑡 − 𝑧)𝑝−1 ×

[

(𝜆4−𝜆2)(Φ+𝐵+𝜈𝜉2)2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}(Φ+𝐵+𝜈𝜉2)+(𝜆3−𝜆1)𝐵

(𝑠1+Φ+𝐵+𝜈𝜉2)(𝑠2+Φ+𝐵+𝜈𝜉2)(𝑠3+Φ+𝐵+𝜈𝜉2)

× 𝑒(−Φ−𝐵−𝜈𝜉2)𝑧 + ∑
(𝜆4−𝜆2)𝑠𝑛

2+{(𝜆4−𝜆2)𝐵+(𝜆3−𝜆1)}𝑠𝑛+(𝜆3−𝜆1)𝐵𝑒𝑠𝑛𝑡 

(𝑠𝑛+Φ+𝐵+𝜈𝜉2) (𝑠𝑛−𝑠(3−𝑛)!) (𝑠𝑛−𝑠4−(𝑛−1)!)
3
𝑛=1

] 𝑑𝜉 𝑑𝑧.   

               (28) 
where, 

 

𝜏𝑁(𝑦, 𝑡) = −
2 𝑈 𝐻(𝑡) 𝜇 𝜈 𝑝

𝜋
∫ ∫

𝜉2 𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
(𝑡 − 𝑧)𝑝−1𝐸𝑥𝑝(−Φ − 𝐵 − 𝜈𝜉2) 𝑧 𝑑𝜉 𝑑𝑧.    

 

is the Newtonian part of shear stress.  

5. Limiting case 

Employing same procedure we obtain here some 
special cases of general solutions of velocity field and 
corresponding shear stress. 

5.1. Solutions of burger’s fluid 

Letting 𝜆4 = 0 in Eqs. 23 and 28, we obtain the 
velocity field and shear stress of Burger’s fluid 

𝑤𝐵(𝑦, 𝑡) = 𝑤𝑁(𝑦, 𝑡) −
2 𝑈 𝐻(𝑡) 𝜈 𝑝

𝜋 𝜆2
∫ ∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉)

𝑡

0

∞

0
 (𝑡 − 𝑧)𝑝−1 ×

[
 
 
 
 
 
 
 

𝜆3𝑠4
2+(𝜆3−𝐵𝜆2−𝜆1)𝑠4+(𝜆3𝐵−𝜆1)𝑒

𝑠4𝑧 

(𝑠4+Φ+𝐵+𝜈𝜉2) (𝑠4−𝑠5) (𝑠4−𝑠6)

+
𝜆3𝑠5

2+(𝜆3−𝐵𝜆2−𝜆1)𝑠5+(𝜆3𝐵−𝜆1)𝑒
𝑠5𝑧 

(𝑠5+Φ+𝐵+𝜈𝜉2) (𝑠5−𝑠4) (𝑠5−𝑠6)

+
𝜆3𝑠6

2+(𝜆3−𝐵𝜆2−𝜆1)𝑠6+(𝜆3𝐵−𝜆1)𝑒
𝑠6𝑧 

(𝑠6+Φ+𝐵+𝜈𝜉2) (𝑠6−𝑠4) (𝑠6−𝑠5)

𝜆3(Φ+𝐵+𝜈𝜉2)2−{𝜆3−𝜆2𝐵−𝜆1}(Φ+𝐵+𝜈𝜉2)+(𝜆3𝐵−𝜆1)

(𝑠1+Φ+𝐵+𝜈𝜉2)(𝑠2+Φ+𝐵+𝜈𝜉2)(𝑠3+Φ+𝐵+𝜈𝜉2)
𝑒(−Φ−𝐵−𝜈𝜉2)𝑧

]
 
 
 
 
 
 
 

 𝑑𝜉 𝑑𝑧,   

                (29) 

and corresponding shear stress 
 

𝜏(𝑦, 𝑡) = 𝜏𝑁(𝑦, 𝑡) −
2 𝑈 𝐻(𝑡) 𝜇 𝜈 𝑝

𝜋 𝜆2
∫ ∫

𝜉2 𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
 (𝑡 − 𝑧)𝑝−1  ×

[
 
 
 
 
 
 
 

𝜆2𝑠4
2−(𝜆1+𝜆2𝐵−𝜆3)𝑠4+(𝜆3−𝜆1)𝐵 𝐸𝑥𝑝(𝑠4𝑧)

(𝑠4+Φ+𝐵+𝜈𝜉2)(𝑠4−𝑠5)(𝑠4−𝑠6)

+
𝜆2𝑠5

2−(𝜆1+𝜆2𝐵−𝜆3)𝑠5+(𝜆3−𝜆1)𝐵 𝐸𝑥𝑝(𝑠5𝑧)

(𝑠5+Φ+𝐵+𝜈𝜉2)(𝑠5−𝑠4)(𝑠5−𝑠6)

+
𝜆2𝑠6

2−(𝜆1+𝜆2𝐵−𝜆3)𝑠6+(𝜆3−𝜆1)𝐵 𝐸𝑥𝑝(𝑠6𝑧)

(𝑠6+Φ+𝐵+𝜈𝜉2)(𝑠6−𝑠4)(𝑠6−𝑠5)

+
𝜆2(Φ+𝐵+𝜈𝜉2)2−(𝜆3−𝜆2𝐵+𝜆1)(Φ+𝐵+𝜈𝜉2)+(𝜆3−𝜆1)𝐵

(𝑠4+Φ+𝐵+𝜈𝜉2)(𝑠5+Φ+𝐵+𝜈𝜉2)(𝑠6+Φ+𝐵+𝜈𝜉2)
𝑒(−Φ−𝐵−𝜈𝜉2)𝑧

]
 
 
 
 
 
 
 

𝑑𝜉 𝑑𝑧                        (30) 
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(𝑠 − 𝑠4)(𝑠 − 𝑠5)(𝑠 − 𝑠6) are the roots of an algebraic 
equation: 
 
𝜆2𝑠

3 + (𝜆1 + 𝜆2𝐵)𝑠2 + {1 + 𝜆1𝐵 + 𝜆3(Φ + 𝜈𝜉2)}𝑠
+ (Φ + 𝐵 + 𝜈𝜉2). 

5.2. Solutions of Oldroyd-B fluid 

Letting 𝜆4 = 𝜆2 = 0 in Eqs. 23 and 28, we obtain 
the velocity field and shear stress of Oldrord-B fluid 

𝑤𝑂𝐵(𝑦, 𝑡) = 𝑤𝑁(𝑦, 𝑡) +
2 𝑈 𝐻(𝑡) 𝜈 𝑝

𝜋 𝜆1
∫ ∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉)

𝑡

0

∞

0
 (𝑡 −

𝑧)𝑝−1 × [

(𝜆1−𝜆3)(𝑠7+𝐵)𝑒𝑠7𝑧 

(𝑠7+Φ+𝐵+𝜈𝜉2)(𝑠7−𝑠8)
+

(𝜆1−𝜆3)(𝑠8+𝐵)𝑒𝑠8𝑧 

(𝑠8+Φ+𝐵+𝜈𝜉2)(𝑠8−𝑠7)

+
(𝜆1−𝜆3)(1+Φ+𝐵+𝜈𝜉2)

(𝑠7+Φ+𝐵+𝜈𝜉2)(𝑠8+Φ+𝐵+𝜈𝜉2)
𝑒(−Φ−𝐵−𝜈𝜉2)𝑧

]  𝑑𝜉 𝑑𝑧,  

                    (31) 

 
and corresponding shear stress 
 

𝜏𝑂𝐵(𝑦, 𝑡) = 𝜏𝑁(𝑦, 𝑡) −
2 𝑈 𝐻(𝑡) 𝜇 𝜈 𝑝

𝜋 𝜆1
∫ ∫

𝜉2 𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
 (𝑡 −

𝑧)𝑝−1 ×

[

(𝜆1−𝜆3)(𝑠7+𝜆3𝜈𝜉2+𝐵)𝑒𝑠7𝑧 

(𝑠7+Φ+𝐵+𝜈𝜉2)(𝑠7−𝑠8)
+

(𝜆1−𝜆3)(𝑠8+𝜆3𝜈𝜉2+𝐵)𝑒𝑠8𝑧 

(𝑠8+Φ+𝐵+𝜈𝜉2)(𝑠8−𝑠7)

+
(𝜆1−𝜆3)(𝜆3𝜈𝜉2+Φ+2𝐵+𝜈𝜉2)

(𝑠7+Φ+𝐵+𝜈𝜉2)(𝑠8+Φ+𝐵+𝜈𝜉2)
𝑒(−Φ−𝐵−𝜈𝜉2)𝑧

]  𝑑𝜉 𝑑𝑧,  

             (32) 
 

(𝑠 − 𝑠7)(𝑠 − 𝑠8) are the roots of an algebraic 
equation: 
 
𝜆1𝑠

2 + {1 + 𝜆1𝐵 + 𝜆3(Φ + 𝜈𝜉2)}𝑠 + (Φ + 𝐵 + 𝜈𝜉2). 

5.3. Solutions of Maxwell fluid 

Letting 𝜆4 = 𝜆3 = 𝜆2 = 0 in Eqs. 23 and 28, we 
obtain the velocity field and shear stress of Maxwell 
fluid 

 

𝑤𝑀(𝑦, 𝑡) = 𝑤𝑁(𝑦, 𝑡) +
2 𝑈 𝐻(𝑡) 𝜈 𝑝

𝜋 𝜆1
∫ ∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉)

𝑡

0

∞

0
 (𝑡 −

𝑧)𝑝−1 × [

𝜆1(𝑠9+𝐵)𝑒𝑠9𝑧 

(𝑠9+Φ+𝐵+𝜈𝜉2)(𝑠9−𝑠10)
+

𝜆1(𝑠10+𝐵)𝑒𝑠10𝑧 

(𝑠10+Φ+𝐵+𝜈𝜉2)(𝑠10−𝑠9)

+
𝜆1(1+Φ+𝐵+𝜈𝜉2)

(𝑠9+Φ+𝐵+𝜈𝜉2)(𝑠10+Φ+𝐵+𝜈𝜉2)
𝑒(−Φ−𝐵−𝜈𝜉2)𝑧

]  𝑑𝜉 𝑑𝑧,   

                                 (33) 

 
and corresponding shear stress 

 

𝜏𝑀(𝑦, 𝑡) = 𝜏𝑁(𝑦, 𝑡) −
2 𝑈 𝐻(𝑡) 𝜇 𝜈 𝑝

𝜋 𝜆1
∫ ∫

𝜉2 𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
 (𝑡 −

𝑧)𝑝−1  × [

𝜆1(𝑠9+𝐵)𝑒𝑠9𝑧 

(𝑠9+Φ+𝐵+𝜈𝜉2)(𝑠9−𝑠10)
+

𝜆1(𝑠10+𝜆3𝜈𝜉2+𝐵)𝑒𝑠10𝑧 

(𝑠10+Φ+𝐵+𝜈𝜉2)(𝑠10−𝑠9)

+
𝜆1(Φ+2𝐵+𝜈𝜉2)

(𝑠9+Φ+𝐵+𝜈𝜉2)(𝑠10+Φ+𝐵+𝜈𝜉2)
𝑒(−Φ−𝐵−𝜈𝜉2)𝑧

]  𝑑𝜉 𝑑𝑧,   

             (34) 
 

(𝑠 − 𝑠9)(𝑠 − 𝑠10) are the roots of an algebraic 
equation:  
 
𝜆1𝑠

2 + (1 + 𝜆1𝐵)𝑠 + (Φ + 𝐵 + 𝜈𝜉2). 

5.4. Solutions of second grade fluid 

Letting 𝜆4 = 𝜆2 = 𝜆1 = 0 in Eqs. 23 and 28, we 
obtain the velocity field and shear stress of Second 
Grade fluid 

𝑤𝑆𝐺(𝑦, 𝑡) = 𝑤𝑁(𝑦, 𝑡) +
2 𝑈 𝐻(𝑡) 𝜈 𝑝

𝜋
∫ ∫

𝜉 𝑠𝑖𝑛(𝑦𝜉)

(1+𝜆3Φ+𝜆3𝜈𝜉2)

𝑡

0

∞

0
 (𝑡 −

𝑧)𝑝−1 ×

[𝜆3(Φ+𝜈𝜉2)𝑒
(

Φ+𝐵+𝜈𝜉2

1+𝜆3Φ+𝜆3𝜈𝜉2)𝑧
 

(
Φ+𝐵+𝜈𝜉2

1+𝜆3Φ+𝜆3𝜈𝜉2−(Φ+𝐵+𝜈𝜉2))
−

𝜆3(Φ+𝜈𝜉2)𝑒(−Φ−𝐵−𝜈𝜉2)𝑧 

(
Φ+𝐵+𝜈𝜉2

1+𝜆3Φ+𝜆3𝜈𝜉2−(Φ+𝐵+𝜈𝜉2))
] 𝑑𝜉 𝑑𝑧,  

             (35) 

 
and corresponding shear stress 
 

𝜏𝑆𝐺(𝑦, 𝑡) = 𝜏𝑁(𝑦, 𝑡) +
2 𝑈 𝐻(𝑡) 𝜇 𝜈 𝑝

𝜋
∫ ∫

𝜉2 𝑐𝑜𝑠(𝑦𝜉)

(Φ+𝐵+𝜈𝜉2)

𝑡

0

∞

0
 (𝑡 −

𝑧)𝑝−1 × [(
Φ+𝐵+𝜈𝜉2

1+𝜆3Φ+𝜆3𝜈𝜉2
) 𝜆3(2 − 𝜆3)𝑒

−𝑧 −

𝑒
(

Φ+𝐵+𝜈𝜉2

1+𝜆3Φ+𝜆3𝜈𝜉2)𝑧] 𝑑𝜉 𝑑𝑧.                  (36) 

 
Also, solutions for Newtonian fluid when 𝜆1 = 0 

in Eqs. 33 and 34 can be easily be retrieved in similar 
manners which are known in literature (Jamil, 
2012). 

6. Concluding remarks  

In this portion is analyzed for the significance of 
permeability (porosity), magnetism and several 
rheological parameters, material parameters on the 
fluid flow due to accelerating plate for 
magnetohydrodynamics generalized Burger’s fluid 
embedded with porous medium as a sum of 
Newtonian and non-Newtonian forms. In order to 
illustrate the differences and similarities among 
various graphs for relevant physical aspects, we have 
used different numerical values for instance, time, 
permeability, porosity, magnetic parameter, 
viscosity, non-zero constant, density, kinematic 
viscosity, relaxation time, retardation phenomenon, 
material and rheological parameters etc.  However 
the major findings/outcomes are listed below: 

 
1. The general solutions for velocity field and shear 

stress have been expressed into compact form i-e 
in terms of series form satisfying initial, 
boundary and natural conditions as well. These 
solutions are obtained employing four 
translations of integral transforms which are (i) 
Fourier Sine transform, (ii) Laplace transform, 
(iii) Inverse Fourier Sine transform and (iv) 
Inverse Laplace transform. The translation from 
(i) to (iv) are applied according to governing 
partial differential equation and usual initial and 
boundary conditions.   

2. The influence of time parameter 𝑡 is depicted in 
Fig. 1 in which as time increases the both velocity 
and shear stress profiles are decreasing function 
in absolute values.  

3. Fig. 2 is plotted for the rheology of viscosity 𝜈 of 
the fluid in which the elastic behavior of fluid has 
a tendency to enhance the profiles of velocity and 
shear stress generated by motion of accelerating 
plate. 

4. Figs. 3, 4, 5, and 6 have been drawn for showing 
the influence on material parameters (𝜆1, 𝜆2, 𝜆3 
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and 𝜆4), by considering nearer and smaller values 
of 𝜆1 and 𝜆2 have similar and identical behavior 
of fluid flow as expected. It is worth pointed out 
that 𝜆1 and 𝜆3 relaxation and retardation 
phenomenon respectively have quietly 
contradictory effects on fluid flow for both 
profiles velocity as well as shear stress. 

5. Fig. 7 is presents the profile of velocity and shear 
stress in which various extreme small values are 
taken for magnetic field 𝐵, it is clearly seen that it 
is a Lorentz force which resist the fluid flow. This 
is due to the fact that magnetic field B is applied 
in transverse direction.  

6. The effects of permeability 𝐾 and porosity Φ on 
the fluid motion are depicted in Fig. 8 which has 

qualitatively scattering behavior on the fluid 
motion. 

7. Fig. 9 is drawn to give variations for the behavior 
on the fluid motion in presence of magnetic field 
as well as porosity. In which the velocity field has 
squeezed motion of fluid as compared with 
profile of shear stress.  

8. Figs. 10 and 11 display the variation in presence 
of porosity and magnetic field respectively for six 
models namely (i) Generalized Burger model, (ii) 
Burger model, (iii) Oldroyd-B model, (iv) Maxwell 
model, (v) Second Grade model and (vi) 
Newtonian model, in which generalized Burger’s 
model is swiftest and Newtonian model has 
slowest behavior on motion either the presence 
of porosity and magnetic field or not. 

 

 
Fig. 1: Profile of velocity fields and shear stress for t at 𝑈 = 2, 𝜈 = 1, 𝜇 = 2.5, 𝜆1 = 2,  𝜆2 = 7,  𝜆3 = 5,  𝜆4 = 4, 𝑝 = 2, 𝐵 =

1.5,Φ = 2.74 
 

 
Fig. 2: Profile of velocity fields and shear stress for 𝜈 at 𝑈 = 1, 𝑡 = 3𝑆, 𝜇 = 1.3,  𝜆1 = 0.2,  𝜆2 = 0.25,  𝜆3 = 1.5,  𝜆4 = 2.25, 𝑝 =

1, 𝐵 = 2,Φ = 16 
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Fig. 3: Profile of velocity fields and shear stress for  𝜆1 at 𝑈 = 1, 𝑡 = 3𝑆, 𝜈 = 3, 𝜇 = 1.3,  𝜆2 = 0.25,  𝜆3 = 1.5,  𝜆4 = 2.25, 𝑝 =

1, 𝐵 = 2,Φ = 16 

 
Fig. 4: Profile of velocity fields and shear stress for  𝜆2 at 𝑈 = 2, 𝑡 = 2𝑆, 𝜈 = 2, 𝜇 = 2.9,  𝜆1 = 0.3,  𝜆3 = 1.2,  𝜆4 = 0.2, 𝑝 = 1,

𝐵 = 0.4,Φ = 8 
 

 
Fig. 5: Profile of velocity fields and shear stress for  𝜆3 at 𝑈 = 2, 𝑡 = 2𝑆, 𝜈 = 1.5, 𝜇 = 7.2,  𝜆1 = 5,  𝜆2 = 1.2,  𝜆4 = 19, 𝑝 = 1,

𝐵 = 5,Φ = 3 
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Fig. 6: Profile of velocity fields and shear stress for  𝜆4 at 𝑈 = 5, 𝑡 = 3𝑆, 𝜈 = 6.25, 𝜇 = 7.2,  𝜆1 = 12,  𝜆2 = 33,  𝜆3 = 104, 𝑝 =

1, 𝐵 = 0.4,Φ = 7.5 

 
Fig. 7: Profile of velocity fields and shear stress for 𝐵 at 𝑈 = 1, 𝑡 = 2𝑆, 𝜈 = 0.25, 𝜇 = 2.8,  𝜆1 = 1.2,  𝜆2 = 2.2,  𝜆3 = 0.5,  𝜆4 =

0.2, 𝑝 = 1,Φ = 3.75 
 

 
Fig. 8: Profile of velocity fields and shear stress for Φ at 𝑈 = 1, 𝑡 = 2𝑆, 𝜈 = 1.7, 𝜇 = 11.6,  𝜆1 = 3,  𝜆2 = 3.82,  𝜆3 = 2.8,  𝜆4 =

2.1, 𝑝 = 1, 𝐵 = 5.9 
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Fig. 9: Comparison of velocity fields and shear stress at 𝑈 = 1, 𝑡 = 1𝑆, 𝜈 = 6.2, 𝜇 = 5.5,  𝜆1 = 5,  𝜆2 = 8,  𝜆3 = 4,  𝜆4 = 4.7,

𝑝 = 1, 𝐵 = 3, Φ = 17.2 

 
Fig. 10: Comparison of velocity fields and shear stress at 𝑈 = 1, 𝑡 = 1𝑆, 𝜈 = 3.925, 𝜇 = 1.3,  𝜆1 = 1,  𝜆2 = 2.9,  𝜆3 = 7,  𝜆4 =

27, 𝑝 = 1, 𝐵 = 2.75, Φ = 2.5 
 

 
Fig. 11: Comparison of velocity fields and shear stress at 𝑈 = 8, 𝑡 = 1𝑆, 𝜈 = 17.5, 𝜇 = 9.1,  𝜆1 = 2.5,  𝜆2 = 3,  𝜆3 = 5.7,  𝜆4 =

4.2, 𝑝 = 1, 𝐵 = 1.5, Φ = 5.25 
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